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All-optical binary convolution with a photonic spiking vertical-cavity surface-emitting laser (VCSEL) neuron is
proposed and demonstrated experimentally for the first time, to the best of our knowledge. Optical inputs, ex-
tracted from digital images and temporally encoded using rectangular pulses, are injected in the VCSEL neuron,
which delivers the convolution result in the number of fast (<100 ps long) spikes fired. Experimental and numeri-
cal results show that binary convolution is achieved successfully with a single spiking VCSEL neuron and that all-
optical binary convolution can be used to calculate image gradient magnitudes to detect edge features and separate
vertical and horizontal components in source images. We also show that this all-optical spiking binary convo-
lution system is robust to noise and can operate with high-resolution images. Additionally, the proposed system
offers important advantages such as ultrafast speed, high-energy efficiency, and simple hardware implementation,
highlighting the potentials of spiking photonic VCSEL neurons for high-speed neuromorphic image processing
systems and future photonic spiking convolutional neural networks. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.412141

1. INTRODUCTION

Convolutional neural networks (CNNs) have seen tremendous
success in many applications, such as speech and image recog-
nition [1,2], computer vision [3], and document analysis [4].
However, CNN-based systems are computationally expensive
due to their complicated architectures and the large number
of parameters they rely on. CNNs therefore typically require
the implementation of multicore central processing units
and graphics processing units to compensate for the rather high
computational expense [5,6]. This makes CNN architectures
often unsuitable for smaller devices like phones and smart cam-
eras, where power and speed have strict limitations. To address
these drawbacks, the optimization and discovery of new high-
speed and low power consumption platforms for CNNs are
urgently required. For the optimization of CNNs, binary
CNNs, which are simple, efficient, and accurate approxima-
tions of complete CNNs, can be introduced [7–9]. In binary
CNNs, the weights given to the inputs of each convolutional
layer are approximated with binary values [7]. Therefore,
binary CNNs boast 58× faster convolutional operations and
32× less memory requirements than traditional CNNs [7].

Several optimized binary versions of CNNs have been proposed
for training processes and image classification tasks [7,10,11].
However, beyond the optimization of CNNs, a new platform
offering high speed and low power consumption remains highly
desirable.

Photonics is considered a highly promising candidate for fu-
ture neural network implementations given the unique advan-
tages it provides such as high speed, wide bandwidth, and low
power consumption [12–21]. Photonics-based CNNs have
therefore been proposed in order to increase the speed of con-
volutional operations [18–21]. A photonic CNN accelerator
was proposed based on silicon photonic micro-ring weighting
banks [18]. The full system design offers more than three orders
of magnitude improvement in execution time, and its optical
core potentially offers more than five orders of magnitude im-
provement compared to state-of-the-art electronic counterparts
[18]. Xu et al. also proposed high-accuracy optical convolution
unit architecture based on acousto-optical modulator arrays,
where the optical convolution unit was shown to perform well
on inferences of typical CNN tasks [20]. However, the size of
the system is based on the size of the kernel utilized in these
emerging works on photonic CNNs.
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In this work, we propose an all-optical binary convolution
system using a single vertical-cavity surface-emitting laser
(VCSEL) operating as a spiking optical neuron, hence, dramati-
cally reducing hardware requirements. In our approach, tem-
poral encoding is used instead of spatial encoding, thus
crucially helping to reduce (optical) hardware complexity. In
our all-optical binary convolution technique, results are repre-
sented by the number of fast (<100 ps long) spiking responses
delivered by the optical spiking VCSEL neuron. This has
unique advantages in terms of robustness to noise and high pre-
cision. Additionally, VCSELs have unique inherent advantages,
such as high-energy efficiency, high-speed modulation capabil-
ity, low bias currents, easy packaging, and highly integrable
structures [22,23]. In particular, VCSELs have demonstrated
the ability to generate fast spiking dynamics analogous to those
of biological neurons known for their robustness to input noise
[24–29]. The controlled activation, inhibition, and communi-
cation of these neuronal dynamics has been demonstrated, and
recently a single VCSEL device was used to perform spiking
pattern recognition and rate coding [24–31]. Thus, photonic
spiking VCSELs make suitable candidates for a new future pho-
tonic platform for ultrafast energy efficient spiking CNNs.

In this work, we use a VCSEL-based photonic approach for
binary convolution to demonstrate image gradient magnitude
calculation. This delivers an essential portion of the image edge
detection functionality used by computer vision and image rec-
ognition systems. Here, a single VCSEL system is developed to
solely perform a convolution operation; hence, no VCSEL-
based CNN architecture, capable of providing learning and
classification capabilities, is discussed in this work. The rest
of the paper is organized as follows. Section 2 is devoted to
the experimental setup of this work for the demonstration
of all-optical binary convolution with a spiking VCSEL neuron
and the theoretical model used to predict the response of the
system. In Section 3, convolutional results are analyzed before
the full calculation of image gradient magnitudes is performed
both experimentally and theoretically. Finally, Section 4 sum-
marizes the conclusions of this work.

2. EXPERIMENTAL SETUP AND THEORETICAL
MODEL

We present here the experimental arrangement and theoretical
model of the all-optical binary convolution system based on a
photonic spiking VCSEL neuron. In this work, we set a source
digital image and a kernel as the two inputs of the convolution
system. The value of any one pixel in the source image or kernel
is limited to 0 or 1.

A. Experimental Setup
Figure 1 shows the schematic diagram of the fiber-optic exper-
imental setup. Two separate electrical signals are generated with
a high-bandwidth arbitrary waveform generator (AWG,
Keysight M8190a) representing the source image and the ker-
nel used for the convolution process, respectively. These elec-
trical signals (from Channels 1 and 2 of the AWG) are
individually amplified by RF Amplifiers 1 and 2 before they
are fed into two 10 GHz Mach–Zehnder (MZ) intensity mod-
ulators (Mod1 and Mod2) to encode the source image and

kernel into an external optical signal. Compared with two paths
of external optical injection, one external optical path, connect-
ing two modulators, makes the injection locking of the VCSEL
device easier. It also allows an easy approach to generate (in a
single optical path) the required multi-level optical input signal.
Additionally, using less optical devices reduces the energy con-
sumption of the external optical path and reduces the cost of
the photonic spiking neural network. The external optical sig-
nal is generated by a 1300 nm tunable laser (TL, Santec TLS-
210 V). An optical isolator (OI) is included after the TL to
avoid unwanted light reflections that might lead to spurious
results. A variable optical attenuator (VOA) is used after the
OI to adjust the strength of the light signal from the TL.
The polarization of the optical signal from the TL is adjusted
using three polarization controllers (PC1, PC2, and PC3),
where PC1 and PC2 are specifically used to match the polari-
zation of the optical signal to that which maximizes the perfor-
mance of the two modulators, encoding, respectively, the image
(Mod1) and the kernel (Mod2) information into the optical
path. PC3 is used to adjust the final polarization of the encoded
optical signal such that it matches the polarization of the tar-
geted VCSEL mode. A 50:50 optical coupler (OC1) is used to
split the light signal into two paths. The first one is connected
to a power meter (PM) to monitor the input strength, whilst
the second one is directly injected into a commercially available
1300 nm VCSEL through an optical circulator (CIRC). The
output of the VCSEL, acting as a spiking optical neuron, is sent
to an 8 GHz real-time oscilloscope (SCOPE, Rohde & Schwarz
RTP) and an optical spectrum analyzer (OSA, Anritsu
MS9710C) for analysis. The VCSEL was kept at a constant
temperature of 293 K with an applied bias current of
6.5 mA (the lasing threshold current of the VCSEL was
I th � 2.96 mA at 293 K). The optical spectrum of the free-
running VCSEL is shown in Fig. 2(a), where the two lasing
peaks correspond to the two orthogonal polarizations of the
fundamental transverse mode of the device. We refer to the
main lasing mode as the parallel polarized mode (or Y-polarized
mode, YP mode, λy) and to the subsidiary mode as the orthogo-
nally polarized mode (or X-polarized mode, XP mode, λx).
Figure 2(b) shows, in turn, the optical spectrum of the

Fig. 1. Experimental setup of the binary convolution system based
on a single VCSEL. TL, tunable laser; OI, optical isolator; VOA, var-
iable optical attenuator; PC1, PC2, and PC3, polarization controllers;
AWG, arbitrary waveform generator; Mod1, Mod2, Mach–Zehnder
modulators; OC1, OC2, optical couplers; CIRC, circulator; Bias &
T Controller, bias and temperature controller; PD, photodetector;
PM, power meter; SCOPE, oscilloscope; OSA, optical spectrum
analyzer.
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1300 nm VCSEL device in the spiking regime, as it is subject to
optical injection into the orthogonally polarized mode of the
device. Upon injection of the external optical signal into the
XP mode of the device, the XP mode becomes the dominant
mode, whilst the YP mode becomes attenuated. The frequency
detuning between the external optically injected signal and the
XP mode of the VCSEL was equal to −5.64 GHz. The power
of the optically injected signal was 127 μW.

B. Theoretical Model
We use an extension of the well-known spin-flip model (SFM)
to model the operation of the VCSEL acting as a spiking optical
neuron. In our formulation, we add extra terms to the model’s
equations to account for the source image and kernel inputs.
The rate equations can be described as follows [26,27]:

dEx,y

dt
� −�k � γa�Ex,y − i�kα� γp�Ex,y

� k�1� iα��NEx,y � inEy,x�
� kinj�E injx1�t� � E injx2�t��eiΔωx t � Fx,y, (1)

dN
dt

� −γN �N �1� jExj2 � jEyj2� − μ� in�EyE	
x − ExE	

y ��,
(2)

dn
dt

� −γsn − γN �n�jEx j2 � jEyj2� � iN �EyE	
x − ExE	

y ��,
(3)

where the subscripts x, y represent the XP and YP modes of the
VCSEL, respectively. Ex,y is the slowly varying complex ampli-
tude of the field in the XP and YP modes. N is the total carrier
inversion between conduction and valence bands. n is the dif-
ference between carrier inversions with opposite spins. k de-
notes the field decay rate. γa and γp are the linear dichroism
and the birefringence rate, respectively. α is the linewidth en-
hancement factor. γN is the decay rate of N . γs is the spin-flip
rate. μ represents the normalized pump current. kinj is the in-
jected strength, and E injx1 and E injx2 indicate, respectively, the
source image and kernel inputs. Δωx is defined as Δωx �
ωinjx − ω0, where ωinjx is the angular frequency of the externally
injected light in the XP mode, and ω0 � �ωx � ωy�∕2 is the
center frequency between the XP and YP modes with

ωx � ω0 � αγa − γp and ωy � ω0 − αγa � γp. The frequency
detuning between the externally injected signal and the XP
mode is set as Δf x � f injx − f x . Hence, in Eq. (1),
Δωx � 2πΔf x � αγa − γp. Fx,y are the spontaneous emission
noise terms, which can be written as

Fx �
ffiffiffiffiffiffiffiffiffiffiffi
βspγN
2

r � ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

p
ξ1 �

ffiffiffiffiffiffiffiffiffiffiffiffi
N − n

p
ξ2

�
, (4)

Fy � −i

ffiffiffiffiffiffiffiffiffiffiffi
βspγN
2

r � ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

p
ξ1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
N − n

p
ξ2

�
, (5)

where βsp is the strength of the spontaneous emission, and ξ1
and ξ2 are independent complex Gaussian white noise terms
of zero mean and a unit variance. We numerically solve
Eqs. (1)–(4) using the fourth-order Runge–Kutta method.
The parameter values configured for the 1300 nm VCSEL
are as follows [27]: k � 185 ns−1, γa � 2 ns−1, γp �
128 ns−1, α � 2, γN � 0.5 ns−1, γs � 110 ns−1, βsp � 10−6,
and kinj � 125 ns−1. With these parameters, the YP mode is
the main lasing mode, and the XP mode is the subsidiary mode,
as in Fig. 2(a).

3. EXPERIMENTAL AND NUMERICAL RESULTS

In this section, we firstly provide an experimental proof-of-con-
cept demonstration of all-optical binary convolution with a
spiking VCSEL neuron. We then calculate the image gradient
magnitudes from a basic “Square” source image and a complex
“Horse head” source image by means of all-optical binary con-
volution. Simulation results on the binary convolution and the
calculation of image gradient magnitudes are also presented us-
ing a “Horse” source image from the latest version of the
Berkeley Segmentation Data Set [32]. Finally, the robustness
of our binary convolution system is also tested numerically
by adding noise to the source image and kernel inputs.

A. Experimental Results
Figure 3 shows an example of a binary two-dimensional (2D)
convolution calculation, where a 3 × 3 submatrix (9 pixels)
from a source image and a kernel are element-wise multiplied,
and the subsequent values of the multiplication are summated.
In our experiment, we temporally encoded each pixel of the
source image and the kernel inputs using rectangular pulses.
Pixels of value “1” were optically encoded using intensity
modulated power drops in the TL’s light (via MZ modulators,
Mod 1 and Mod 2), whereas pixels of value “0” produced no
intensity modulation in the TL’s light. The duration of each
rectangular pulse encoding a pixel was set to 1.5 ns to match
the refractory period of the experimentally measured spiking
dynamics from the VCSEL neuron [17]. The experimental op-
tical realization of the binary convolution example provided in
Fig. 3 is depicted graphically in Fig. 4. Figures 4(a) and 4(b)
plot, respectively, the temporally encoded 9 pixel (3 × 3) image
submatrix and kernel inputs generated for the example given in
Fig. 3. Given that the optically encoded source image and ker-
nel inputs were injected into the VCSEL synchronously, we
delayed the kernel input such that its modulation (in Mod
2) occurred on top of the corresponding modulated image

Fig. 2. (a) Optical spectrum of free-running VCSEL used in the
experiment. (b) Optical spectrum of the VCSEL subject to constant
optical injection. Two polarization modes of VCSELs are referred to as
λy (parallel) and λx (orthogonal).
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input (from Mod 1). We introduced a delay time in the kernel
input (directly using the AWG) equal to the time required for a
light pulse to travel from Mod 1 to Mod 2. Figure 4(c) shows
the optical signal measured after Mod 2 in the setup, combin-
ing in a single input line the temporal image and kernel infor-
mation given in Figs. 4(a) and 4(b). This signal, which was
injected into the VCSEL neuron to perform the binary convo-
lution had three different levels (low, medium, and high) de-
pending on the specific pixel values in the image and kernel at a
given instance. We control the conditions of the injected signal
[in Fig. 4(c)] in such a way that the medium and high input
levels injection lock the VCSEL to the external signal, deliver-
ing a constant stable temporal output. The lowest input level
brings the VCSEL out of the injection locking and into a
dynamical region, where the device produces fast spiking
dynamical responses [24]. Figure 4(d) shows the experimentally
measured time series at the VCSEL neuron’s output, yielding
stable or spiking outputs depending on the input intensity lev-
els [from Fig. 4(c)]. Importantly, Fig. 4(d) shows that the num-
ber of spikes fired by the VCSEL neuron directly provides the
result of the binary convolution. It can be seen in Fig. 4(d) that
four fast (<100 ps long) spikes are fired by the VCSEL neuron,
the same result as that of the binary convolution example
in Fig. 3.

Figure 5 shows a temporal map [17] merging in a single plot
100 superimposed consecutive convolutional outputs from the
photonic spiking VCSEL neuron. The image and kernel inputs
and the experimental conditions are the same as those shown in
Fig. 4. Spike events are depicted in yellow in the color map of
Fig. 5, and steady state responses appear in light blue. Figure 5
clearly shows that binary convolutional results to 100 consecu-
tive inputs remain the same, producing, in all 100 cases, four
separate spiking responses at the VCSEL’s output. The optical
binary convolutional results obtained with the spiking VCSEL
neuron are, therefore, consistent and reproducible. This proof-
of-concept result obtained with a spiking VCSEL highlights a
new, controllable way to perform convolution operations for
information and image processing tasks.

B. Calculation of Image Gradient Magnitudes
In this section, the image gradient magnitude, critical to image
edge detection, is calculated using our approach based on a sin-
gle spiking VCSEL neuron and optical binary convolution. The
image gradient magnitude G�x� of a given pixel x is calculated
using the following equations [33]:

G�x� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GX �x�2 � GY �x�2

p
, (6)

GX �x� � �B�x� ⊗ B�
X � − �B�x� ⊗ B−

X �, (7)

GY �x� � �B�x� ⊗ B�
Y � − �B�x� ⊗ B−

Y �: (8)

Four binary convolutions, i.e., B�x� ⊗ B�
X ,Y , are used in

GX �x� and GY �x�. B�x� �
PN−1

p�0 s�ip, ix� · 2p is the N bit local
binary pattern descriptor of pixel x. ix is the central pixel in-
tensity, and ip is the intensity of the pth neighbor of x in the
source pattern. The comparison operator is defined as

s�ip, ix� �
�
1 if jip − ix j > T x
0 otherwise

, (9)

where T x � 1
4
ix � 20 and N � 5 × 5 − 1.

The range of the local binary pattern descriptor of a pixel is
presented in gray color in Fig. 6(a). In Fig. 6(b), a “Square”
source image is made up of a solid black 10 × 10 pixels square

Fig. 3. Example of a single step during a 2D binary convolution
operation. During this step, a Hadamard (element-wise) product is
calculated for a submatrix of the image and the kernel, and all of
the values in the multiplication result are summed up to obtain a single
value.

Fig. 4. Experimental convolution operation. (a) Inputs of Channel
1 (image in Fig. 3). (b) Inputs of Channel 2 (kernel in Fig. 3).
(c) Inputs of VCSEL. (d) Outputs of VCSEL (the results of
convolution).

Fig. 5. Temporal map of 100 superimposed consecutive convolu-
tional results measured experimentally at the output of spiking VCSEL
neuron.
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on a 24 × 24 pixels white background. In the grayscale
image, the intensities of white and black pixels are 255 and
0, respectively. For example, the intensity of the red-highlighted
pixel x in Fig. 6(b) is ix � 255. We arrange and serialize the
pixels in the range of local binary pattern descriptors by col-
umns. The first neighbor pixel intensity is i1 � 0; hence, ac-
cording to Eq. (9), s�i1, ix� � 1. The third neighbor is
i3 � 255; hence, s�i3, ix� � 0. B�x� can be calculated for
the red-highlighted pixel in Fig. 6(b) as follows:

B�x� �

2
666664

s�i1, ix� − − − s�i20, ix�
s�i2, ix� − − − s�i21, ix�
s�i3, ix� − x − s�i22, ix�
s�i4, ix� − − − s�i23, ix�
s�i5, ix� − − − s�i24, ix�

3
777775

�

2
666664

1 1 1 1 1
1 1 1 1 1
0 0 x 0 0
0 0 0 0 0
0 0 0 0 0

3
777775
: (10)

For the red-highlighted pixel x in Fig. 6(b), “1” in B�x� cor-
responds to a white pixel, and “0” corresponds to a black pixel
in the source image.

In Eqs. (7) and (8), B�
X , B

−
X , B

�
Y , and B

−
Y are the four kernels

that are adopted as in Ref. [33]. Figure 6(c) shows the areas of
the four different kernels. Pixels that fall outside of the high-
lighted areas in Fig. 6(c) for a given string are set to zero. For
example,

B�
X �

2
666664

1 0 0 0 0
0 1 0 0 0
1 1 0 0 0
0 1 0 0 0
1 0 0 0 0

3
777775
: (11)

We arrange and serialize the pixels of B�x� and the four ker-
nels by columns. For example, the string of B�x� is [1, 1, 0, 0,
0, 1, 1, 0, 0, 0…], and the string of B�

x is [1, 0, 1, 0, 1, 0, 1, 1,
1, 0…]. We studied experimentally the response of the VCSEL

neuron under the injection of the “Square” source image and
kernel operators included in Figs. 6(b) and 6(c). Specifically,
Fig. 7 showcases the experimentally recorded results at the
VCSEL output for each kernel when operating on the red-high-
lighted pixel in Fig. 6(b). It can be seen in Fig. 7(a) that fast
[sub-nanosecond (ns)] spikes are only triggered by the 1st and
7th pixels. Therefore, the convolutional result for B�x� ⊗ B�

X is
two, as was expected. Here, the convolutional result is mea-
sured offline, where the number of spiking responses is counted
using software. This could be achieved in future realizations
experimentally using electronic or photonic spike/photon
counting hardware. Similarly, from Figs. 7(b)–7(d) we can
see that 2, 6, and 0 sub-ns spikes are elicited at the
VCSEL’s output for kernels B−

x , B�
y , and B�

y , respectively.
Using the experimental results measured from the spiking
VCSEL neuron, we calculate off-line GX �x�, GY �x�, and
G�x� to determine the image gradient magnitude. Based on
the experimentally measured results in Figs. 7(a)–7(d),
GX �x�, GY �x�, and G�x� are 0, 6, and 6, respectively, using
Eqs. (7)–(9).

The experimental process in Fig. 7 is repeated consecutively
for every single pixel in the “Square” source image [Fig. 6(b)] to
calculate their image gradient magnitudes. The latter are used
to build the reconstructed image in Fig. 8(a), providing a gra-
dient map for the “Square” source image. Figure 8(a) clearly
reveals a “hollow” square shape in the experimentally produced
gradient map, hence, detecting all edge features of the source
image. Here, the corner and edge pixels are omitted [34]. In
Fig. 8(a), the pixels with a gradient magnitude G�x� > 3
can be selected to thin the response and reveal the true edges

Fig. 6. (a) Gray color: range of the local binary pattern descriptor of
pixels. (b) A 24 × 24 pixels “Square” source image. The red highlight
indicates a given pixel in the image. (c) The four convolutions (B�

X ,
B−
X , B

�
Y , and B−

Y ) of the 5 × 5 binary pattern. Bits that fall outside the
highlighted areas for a given string are set to zero.

Fig. 7. Four convolutional results with four highlighted area kernels
for one pixel, which has red box in Fig. 6.

Fig. 8. Gradient maps of the “Square” source image. Visualizations
of (a) G, (b) GX , and (c) GY maps of the “Square” source image based
on the optical binary convolution performed by the VCSEL neuron.
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of the “Square” [33,35]. Additionally, Figs. 8(b) and 8(c) plot
separately the reconstructed images using the obtained values
for GX �x� and GY �x� from the experimentally measured time
series at the VCSEL neuron’s output. Figures 8(b) and 8(c) re-
veal that both vertical and horizontal lines can be individually
detected from the source image in Fig. 6(b) using, respectively,
the magnitudes GX �x� and GY �x�. For one pixel x, a total of
15 ns is required to process each of the four binary convolu-
tions, as shown in Fig. 7. Hence, 60 ns (15 ns × 4) is needed for
the binary convolutions of one pixel with our single VCSEL
system. The time required for binary convolution is, therefore,
dependent on the number of pixels in the image. Considering
that the optical power of the VCSEL is on average equal to
∼500 μW, for the different operation conditions used in this
work, we can estimate the energy consumption of the binary
convolution for one pixel as 30 pJ (0.5 mW × 60 ns) in our
system. In the future, the binary convolution operation could
be achieved using multiple devices integrated in a VCSEL array
simultaneously. Such a new architecture would increase the
speed of the convolution operation, obviously at the expense
of increasing the system’s complexity. This work therefore pro-
vides a low complexity, reduced energy consumption, and fast
hardware approach for photonic binary convolution for novel
light-enabled image processing functionalities.

To further investigate our experimental system, we focused
on demonstrating the achievement of gradient maps from a
complex source image using the all-optical binary convolution
of this work, as seen in Fig. 9. For this purpose, we selected as a
source image for our VCSEL-based binary convolution system
a complex “Horse head” image [Fig. 9(b)]. This is a 100 × 105

pixels portion of the “Horse” image from the Berkeley
Segmentation Data Set [32] [also included in Fig. 9(a)].
The color image was converted to grayscale before we applied
the same experimental methods used previously to obtain the
results included in Fig. 8 above. The values of G�x�, GX �x�,
and GY �x� experimentally achieved for the complex “Horse
head” image [Fig. 9(b)] are shown in Figs. 9(c)–9(e), respec-
tively. These gradient maps reveal the successful detection of
the edge features in this complex image, hence permitting
the successful recreation of the outline and shape of the horse
head. This effectively demonstrates that the reported all-optical
binary convolution technique with a VCSEL neuron is also
suitable for complex high-resolution source images.

C. Numerical Results
In this section, binary convolution based on a single VCSEL
neuron is performed numerically. The robustness of the system
to perform all-optical binary convolution under noisy inputs
and for larger kernels is investigated. Finally, the calculation
of image gradient magnitudes with our photonic approach us-
ing a single VCSEL neuron is presented numerically using the
“Horse” image from the latest version of the Berkeley
Segmentation Data Set [32].

The binary convolution example given in Fig. 3 and exper-
imentally performed with the VCSEL neuron (see Fig. 4) is
numerically simulated using the SFM model in Figs. 10(a1)–
10(c1). Pixels of value “1” are numerically implemented
using power drop pulses with a strength K p �
0.852 (K p � pulse power∕constant power) and a duration
of 1.5 ns (as in the experimental demonstration). The fre-
quency detuning between the externally injected signal and
the XP mode in the VCSEL model is set to −3.66 GHz.
Figures 10(a1)–10(c1) plot the numerically obtained results
for the all-optical binary convolution with a VCSEL neuron.
Specifically, Figs. 10(a1) and 10(b1) plot, respectively, the time
series for the temporally encoded image [Fig. 10(a1)] and ker-
nel [Fig. 10(b1)] inputs, whilst Fig. 10(c1) plots the numeri-
cally calculated output from the VCSEL neuron. The latter
clearly shows that the simulation successfully reproduces the

Fig. 10. (a1)–(a3) Inputs of Channel 1 (image in Fig. 3). (b1)–
(b3) Inputs of Channel 2 (kernel in Fig. 3). (c1)–(c3) VCSEL neuron’s
output. (a1)–(c1) Convolutional operation in the VCSEL neuron
without noise. (a2)–(c2) Convolutional operation in the VCSEL neu-
ron with added input noise of SNR � 20 dB. (a3)–(c3) Convolution
operation with a 5 × 5 pixels kernel.

Fig. 9. “Horse head” image and the gradient maps of the “Horse
head” image. (a) Source “Horse” image. The blue box indicates the
“Horse Head” image used for analysis in (b). Visualizations of the
(c) G, (d) GX , and (e) GY maps of the “Horse head” image obtained
from the optical binary convolution performed with the VCSEL
neuron.
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outcome of the experimental all-optical binary convolution [see
Fig. 4(d)], where four spikes are elicited by the VCSEL. This
excellent agreement between the modeled results and the exper-
imental findings gives us confidence to test the robustness of
the photonic binary convolution system under the injection of
inputs with added noise. To study this aspect, we model the
response of the VCSEL binary convolutional system under
the injection of noisy inputs with a configured SNR �
20 dB [see results in Figs. 10(a2) and 10(b2)]. Specifically,
Fig. 10(c2) shows that the exact same response is obtained from
the VCSEL neuron as compared to the case with no added
noise in Fig. 10(c1). This outlines the robustness to noise of
the proposed all-optical VCSEL convolutional system.
Additionally, the numerical convolution with a larger 5 × 5 pix-
els kernel is tested numerically in Figs. 10(a3)–10(c3) using
Eq. (10) and Eq. (11) as inputs. Figure 10(c3) shows that
the modeled convolutional result obtained from the VCSEL
neuron also produces two fast spike events, hence yielding
the exact same outcome as obtained experimentally in Fig. 7(a).
We can therefore deduce that the convolution results that can
be obtained with our VCSEL-neuron-based approach are not
limited by the dimension of the kernel operators or the reso-
lution of the image.

Figure 11 shows the numerically calculated gradient maps
obtained with a spiking VCSEL neuron for the “Horse” source
image [32] with a resolution of 481 × 321 pixels [Figs. 11(a)
and 9(a)). Figures 11(b)–11(d) show the calculated gradient
maps for G�x�, GX �x�, and GY �x�, respectively. These were
obtained using the 5 × 5 kernel introduced in the experimental
study of the “Square” source image (see Figs. 6–8). It can be
seen that the numerical simulation successfully reveals the im-
age edge information through the gradient magnitude G�x�, as
seen in Fig. 11(b), as well as the individual horizontal and ver-
tical edge features of the source image through GX �x� and
GY �x�, as seen in Figs. 11(c) and 11(d), respectively. These
results, showing good overall agreement with the experimental
findings of Fig. 9, therefore numerically validate that the gra-
dient magnitude can be successfully calculated with a

photonic spiking VCSEL neuron, irrespective of the image
dimensionality.

Optical binary convolution can be used in systems where
simplified convolutional operations, with binary inputs (still
able to provide high-performance accuracy), provide other
key advantages in terms of increased operation speed, lowered
energy consumption, and reduced hardware requirements. This
is the case of the system reported in this work, using an
extremely hardware friendly implementation of a single
VCSEL to perform high-speed and low energy (<pJ∕spike) im-
age edge-feature detection. Besides, in our approach, the results
of the binary convolution are output in an optical spiking rep-
resentation, providing unique advantages in terms of robustness
to noise and high precision of convolutional results. This spik-
ing representation therefore enables our platform to success-
fully perform with noisy optical and electronic signals.
Whilst other recent works have recently reported complex sys-
tems for optical convolution operation using temporally modu-
lated inputs and weights for image processing tasks showing
excellent performance [36], our technique benefits from an
extremely simple architecture using just one off-the-shelf, in-
expensive 1300 nm VCSEL to perform the binary convolution
operation for image edge-feature detection. Our approach com-
bining a VCSEL-based spiking photonic neuron with time
multiplexing is able to deliver the operation of a full neuronal
layer, where each 1.5-ns-long time slot operates in fact as a vir-
tual neuron (or node) processing specific image pixel informa-
tion. This offers great promise for future implementation of
interconnected VCSEL-based neuronal network architectures
for image processing tasks of increased complexity (e.g., image
classification) and using neuron-like spiking signals to operate.

The utilization of binary convolution in the calculation of
image gradient maps has been reported to outperform the al-
ternative Canny implementation [35] of image gradient maps
convolution, in the Intel i7 mobile processor [33]. In that re-
port, the frequency of the binary gradient-based edge detector
was 4.7 Hz, while the Canny convolution approach was found
to operate at 0.5 Hz. This indicates that binary convolution can
be performed at speeds faster than alternative convolution ap-
proaches. Additionally, mobile processors operate with powers
of several watts (for example, the Intel i7 has a power of 15 W)
[37], whilst VCSELs, such as the one used in this work, provide
low power performance typically at milliwatt (mW) and sub-
mW power levels. Hence, the energy consumption for the
calculation of image gradient maps obtained with our
VCSEL-based optical binary convolution system can be signifi-
cantly more energy efficient, as well as yield faster operation
speeds, than the performance achieved with traditional or
binary convolution methods in digital processors.

4. CONCLUSION

In this work, we proposed and investigated experimentally and
numerically an all-optical binary convolution system using a
VCSEL operating as a photonic spiking neuron. The inputs
(image and kernel) are encoded temporally using fast rectangu-
lar pulses (1.5-ns-long) and optically injected into the VCSEL
neuron. The latter’s optical output directly provides the results
of the convolution in the number of (sub-ns long) spikes fired.

Fig. 11. “Horse” image and gradient maps of the “Horse” image.
(a) “Horse” image. Visualizations of (b) G, (c) GX , and (d) GY maps
of “Horse” image based on the numerical optical binary convolution in
VCSEL.
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In addition to performing all-optical binary convolution, we
demonstrated experimentally and numerically the ability of
the proposed system to calculate the image gradient magnitudes
from digital source images. This feature was successfully used to
identify key edge features from a source image as well as its sep-
arate horizontal and vertical components. Furthermore, we in-
vestigated numerically the robustness of the proposed
VCSEL-based convolutional system to input noise. This simple
system, using a single commercially available VCSEL operating
at the key telecom wavelength of 1300 nm, offers a novel pho-
tonic solution to binary convolution with the advantage of being
highly energy efficient and hardware friendly. This opens exciting
prospects for a new photonic spiking platform for future optical
binary spiking CNNs. Furthermore, the high-speed, low cost,
and neuronal functionalities of these photonic spiking systems
hold promise for numerous processing tasks expanding into
fields such as computer vision and artificial intelligence.
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